Inhaltsverzeichnis

Vorwort	7
Taylorpolynome	8
Herleitung des Taylorpolynoms	9
Die e-Funktion als Taylorreihe	11
Sinus- und Cosinusfunktion als Taylorreihe	13
Entwicklungsstelle x ₀	16
Zusammenhang zwischen Sinus-, Cosinus- und e-Funktion	17
Fourier-Reihen	19
Anwendungsbeispiele	22
Konvergenzaussagen zu Fourierreihen	25
Übungsaufgaben	27
Funktionen mit beliebigen Periodenlängen	31
Nichtperiodische Funktionen	32
Fourier-Transformationen	32
Anwendungen	33
Komplexe Zahlen	35
Bemerkungen zur Definition	36
Rechenoperationen mit komplexen Zahlen	39
Lösung einer quadratischen Gleichung	40
Konjugiert komplexe Zahlen	42
Die Gauß'sche Zahlenebene	43
Exponentialdarstellung von komplexen Zahlen	45
Die n-ten Einheitswurzeln	50
Die Gleichung z ⁿ = a	52
Übungsaufgaben	54
Polynomdivision	58

Vektoranalysis		59
I.	Raumkurven	60
	Ableitung eines Vektors	62
	Bogenlängen	67
	Integration von Vektoren	72
	Skalarfelder	77
	Gradient	82
III.	Vektorfelder	87
	Divergenz	88
	Rotation	92
	Kurvenintegrale	97
l itera	aturverzeichnis	100

Taylorpolynome

Brook Taylor war ein englischer Mathematiker und lebte von 1685 bis 1731. Ihm gelang es, "relativ beliebige" Funktionen durch die nach ihm benannten Polynome beliebig genau zu approximieren, d.h. näherungsweise darzustellen:

$$f(x) = P_n(x) + R_n(x)$$

Dabei ist P_n ein Polynom n-ten Grades und R_n eine Funktion (üblicherweise kein Polynom, denn ansonsten wäre f selbst ein Polynom), welche die Differenz zwischen f und P_n darstellt.

Die obige Gleichung ist trivialerweise immer richtig. Sinn macht sie allerdings nur, wenn das sog. Restglied R_n betragsmäßig möglichst klein ist (ansonsten wäre P_n keine Näherungsfunktion für f).

Warum sollte man überhaupt eine Funktion f durch ein Polynom annähern? Dafür gibt es mehrere gute Gründe:

- Es gibt grundlegende Funktionen (z.B. Exponential-, Logarithmusoder trigonometrische Funktionen), deren Werte man praktikabel nur mit Näherungspolynomen berechnen kann. Jeder Taschenrechner macht das.
- Mit Hilfe von Taylorpolynomen lassen sich einige mathematische Konstanten wie etwa die Kreiszahl π oder die Eulersche Zahl e auf beliebig viele Nachkommastellen genau berechnen.
- Manchmal reicht die Genauigkeit eines 12-stelligen Taschenrechners nicht aus, um sehr kleine Differenzen von Funktionswerten zu ermitteln. Beispiel: $\sqrt{1+3\cdot 10^{-13}} \sqrt{1+2\cdot 10^{-13}}$ Da helfen Taylorpolynome.
- Mit Hilfe von Taylorpolynomen lässt sich sehr einfach der Zusammenhang zwischen Sinus-, Cosinus-, Exponentialfunktion und komplexen Zahlen herstellen.

Bestätige durch Rechnung zumindest die Korrektheit der ersten angegebenen Glieder der Taylorreihen!

$$f(x) = \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \cdots$$
 für $|x| \le 1$

$$f(x) = \sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \dots$$
 für $|x| \le 1$

$$f(x) = \frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3x^2}{8} - \frac{5x^3}{16} \pm \cdots$$
 für $|x| < 1$

$$f(x) = \tan x = 1 + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots$$
 für $|x| < \frac{\pi}{2}$

Weitere Aufgaben:

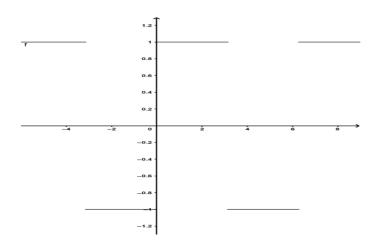
- **1.** Gegeben sei eine Funktion f durch $f(x) = \sqrt{1+x}$ Entwickle f in ein Taylorpolynom zweiten Grades mit Restglied! Berechne damit einen Näherungswert für $\sqrt{17} = \sqrt{16+1} = 4 \cdot \sqrt{1+\frac{1}{16}}$ und gib mit Hilfe des Restgliedes ein Intervall an, in dem sich mit Sicherheit der exakte Wert befinden muss!
- **2.** Berechne die zu Beginn erwähnte Differenz $\sqrt{1+3\cdot 10^{-13}} \sqrt{1+2\cdot 10^{-13}}$ auf mehrere gültige Ziffern genau!
- **3.** Laut Einsteins Relativitätstheorie vergeht für einen sich mit der Geschwindigkeit v bewegenden Menschen weniger Zeit Δt als für einen dazu ruhenden Beobachter Δt_R . Genauer gilt: $\Delta t = \Delta t_R \cdot \sqrt{1 \frac{v^2}{c^2}}$

Ein Hochleistungssportler läuft 100m in einer (für die ruhenden Zuschauer) Zeit von $\Delta t_R=10s$. Berechne näherungsweise, um wie viel der Sportler nach diesem Lauf weniger gealtert ist als die Zuschauer!

Anwendungsbeispiele

Fourier-Analyse einer (periodisch fortgesetzten) Rechtecksfunktion

Es sei
$$f(x) = \begin{cases} 1 & \text{für } 0 \le x < \pi \\ -1 & \text{für } \pi \le x < 2\pi \end{cases}$$



$$a_0 = \frac{1}{\pi} \cdot \int_{0}^{2\pi} f(x) \cdot \cos(0 \cdot x) \, dx = \frac{1}{\pi} \cdot \int_{0}^{2\pi} f(x) dx = 0$$

Obiges folgt durch bloßes Betrachten (der Integralfläche) des Graphen von f. Außerdem ist der Mittelwert ebenfalls Null.

Für n>0 folgt weiter:

$$a_n = \frac{1}{\pi} \cdot \int_0^{2\pi} f(x) \cdot \cos(nx) dx$$

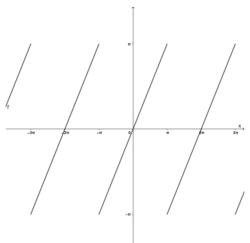
$$= \frac{1}{\pi} \cdot \int_0^{\pi} 1 \cdot \cos(nx) dx + \frac{1}{\pi} \cdot \int_{\pi}^{2\pi} (-1) \cdot \cos(nx) dx$$

$$= \frac{1}{\pi} \cdot \left[\frac{1}{n} \cdot \sin(nx) \right]_0^{\pi} - \frac{1}{\pi} \cdot \left[\frac{1}{n} \cdot \sin(nx) \right]_{\pi}^{2\pi}$$

$$= \frac{1}{\pi} \cdot (0 - 0) - \frac{1}{\pi} \cdot (0 - 0)$$

$$= 0$$

3. Gegeben sei eine (periodisch fortgesetzte) sog. Sägezahnfunktion durch i(x) = x für $-\pi \le x < \pi$

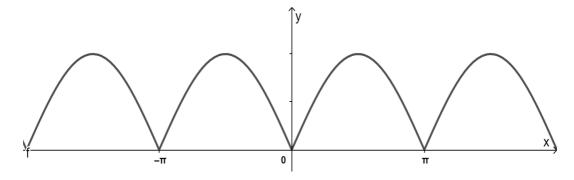


Diese Funktion ist punktsymmetrisch. Es kommen also nur Sinusterme in Betracht.

Zeige, dass

$$i(x) = 2\left[\sin(x) - \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) - \frac{1}{4}\sin(4x) \pm \cdots\right]$$

4. Gegeben sei die Sinusbetragsfunktion k durch $k(x) = |\sin(x)|$



Diese Funktion ist achsensymmetrisch. Es kommen also nur Cosinusterme in Betracht.

Zeige, dass

$$k(x) = \frac{4}{\pi} \cdot \left[1 - \frac{1}{1.3} \cos(2x) - \frac{1}{3.5} \cos(4x) - \frac{1}{5.7} \cos(6x) - \cdots \right]$$

Übungsaufgaben

1. Stelle in der Form a + bi dar (Hinweis: $\frac{1}{i} = \frac{i}{i \cdot i} = -i$): a) $i - \frac{1}{i}$ b) $i^2 - \frac{1}{i^3}$ c) $(i + \frac{1}{i})^2$ d) $(i^9 - i^{14})^2$

a)
$$i - \frac{1}{i}$$

b)
$$i^2 - \frac{1}{i^3}$$

c)
$$(i + \frac{1}{i})^2$$

d)
$$(i^9 - i^{14})^2$$

2. Berechne z^{-1} für

a)
$$z = 1 + i$$

b)
$$z = 3 + 4i$$

a)
$$z = 1 + i$$
 b) $z = 3 + 4i$ c) $z = (1 - 4i) \cdot (3 + i)$

3. Berechne $\frac{3+4i}{2-5i}$ Hinweis: Erweitere mit (2+5i).

4. Berechne $i \cdot z + z^{-1}$ für z = 3 + 2i

5. Berechne $z + \frac{i}{z}$ für z = -2 + 3i

6. Berechne die komplexen Zahlen z.

Anleitung: Setze $z = x + y \cdot i$. Durch Koeffizientenvergleich entstehen dann zwei reelle (evtl. auch quadratische) Gleichungen aus der einen komplexen Gleichung.

a)
$$z^2 = 2i$$

b)
$$z^2 = 3 - 4i$$

b)
$$z^2 = 3 - 4i$$
 c) $z^2 = -21 + 20i$

7. a)
$$z^2 + 10z + 34 = 0$$

b)
$$z^2 - 6z + 12 = 0$$

d) $iz^2 + 6z - 25i = 0$

c)
$$z^2 + 4iz - 13 = 0$$

d)
$$iz^2 + 6z - 25i = 0$$

Lösungen

b)
$$-1 - 1$$

2. a)
$$0.5 - 0.5i$$
 b) $\frac{3}{25} - \frac{4}{25}i$ c) $\frac{7}{170} + \frac{11}{170}i$ d) $2i$

b)
$$\frac{3}{25} - \frac{4}{25}$$

C)
$$\frac{7}{170} + \frac{11}{170}$$

$$3. \quad -\frac{14}{29} + \frac{23}{29}i$$

4.
$$-\frac{23}{13} + \frac{37}{13}i$$

$$5. -\frac{23}{13} + \frac{37}{13}i$$

9. Löse durch Substitution

a)
$$z^4 - (1 + i) \cdot z^2 + i = 0$$

a)
$$z^4 - (1+i)\cdot z^2 + i = 0$$
, b) $z^6 - (1+i)\cdot z^3 + i = 0$,

c)
$$z^4 + (1 + i) \cdot z^2 + i = 0$$
,

d)
$$z^6 + (1 + i) \cdot z^3 + i = 0$$

1. Berechne die 6-ten Einheitswurzeln: $z^6 = 1$

$$\begin{split} z_0 &= 1, \quad z_1 = e^{i \cdot \frac{\pi}{3}} = \frac{1}{2} + \frac{1}{2} \cdot \sqrt{3} \cdot i, \quad z_2 = e^{i \cdot \frac{2\pi}{3}} = -\frac{1}{2} + \frac{1}{2} \cdot \sqrt{3} \cdot i, \\ z_3 &= e^{i \cdot \pi} = -1, \quad z_4 = e^{i \cdot \frac{4\pi}{3}} = -\frac{1}{2} - \frac{1}{2} \cdot \sqrt{3} \cdot i, \quad z_5 = e^{i \cdot \frac{5\pi}{3}} = \frac{1}{2} - \frac{1}{2} \cdot \sqrt{3} \cdot i, \end{split}$$

2. a)
$$z^2 = 24 + 70i \Rightarrow z_1 = 7 + 5i, \quad z_2 = -7 - 5i$$

b)
$$z^2 + (2+i)z - 1 - 5i = 0$$
 $\Rightarrow z_1 = 1 + i$, $z_2 = -3 - 2i$

c)
$$z^2 = 1 + \sqrt{3} \cdot i$$

 $z_0 = \sqrt{2} \cdot e^{i \cdot \frac{\pi}{6}} = \frac{1}{2} \sqrt{6} + \frac{1}{2} \sqrt{2} \cdot i$, $z_1 = -\sqrt{2} \cdot e^{i \cdot \frac{7\pi}{6}} = -\frac{1}{2} \sqrt{6} - \frac{1}{2} \sqrt{2} \cdot i$

d)
$$z^2 = 1 - \sqrt{3} \cdot i$$
 $z_0 = \sqrt{2} \cdot e^{i \cdot \frac{5\pi}{6}} = -\frac{1}{2}\sqrt{6} + \frac{1}{2}\sqrt{2} \cdot i$, $z_1 = -\sqrt{2} \cdot e^{i \cdot \frac{5\pi}{6}} = \frac{1}{2}\sqrt{6} - \frac{1}{2}\sqrt{2} \cdot i$

3. a)
$$z^2 - \frac{5}{2i}z + \frac{3}{2} = 0$$

 $z_1 = \frac{1}{2}e^{i\cdot\frac{\pi}{2}} = \frac{1}{2}i$ $z_2 = 3e^{i\cdot\frac{3\pi}{2}} = -3i$

b)
$$\frac{3}{z+1} = \frac{z}{z-1}$$

 $z_1 = 1 + \sqrt{2} \cdot i \approx \sqrt{3} \cdot e^{0.955i}$ $z_2 = 1 - \sqrt{2} \cdot i \approx \sqrt{3} \cdot e^{-0.955i}$

c)
$$z^2 = 5 - 12i$$

 $z_1 = 3 - 2i \approx 13e^{-0.588i}$ $z_2 = -3 + 2i \approx 13e^{2.554i}$

Beispiele:

1. Es sei
$$\vec{f}(u) = \begin{pmatrix} u - u^2 \\ 2u^3 \\ -3 \end{pmatrix}$$
 Dann ist

$$\int \vec{f}(u)du = \int {u - u^2 \choose 2u^3} du = \begin{pmatrix} \int u - u^2 du \\ \int 2u^3 du \\ \int -3 du \end{pmatrix} = \begin{pmatrix} \frac{1}{2}u^2 - \frac{1}{3}u^3 + c_x \\ \frac{1}{2}u^4 + c_y \\ -3u + c_z \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}u^2 - \frac{1}{3}u^3 \\ \frac{1}{2}u^4 \\ -3u \end{pmatrix} + \vec{c}$$

$$\int_{1}^{2} \vec{f}(u) \, du = \dots = \left[\begin{pmatrix} \frac{1}{2} u^{2} - \frac{1}{3} u^{3} \\ \frac{1}{2} u^{4} \\ -3 u \end{pmatrix} \right]_{1}^{2} = \begin{pmatrix} -\frac{2}{3} \\ 8 \\ -6 \end{pmatrix} - \begin{pmatrix} \frac{1}{6} \\ \frac{1}{2} \\ -3 \end{pmatrix} = \begin{pmatrix} -\frac{5}{6} \\ 7,5 \\ -3 \end{pmatrix}$$

2. Ein Körper bewege sich mit der Geschwindigkeit $\vec{v}(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \\ 5 \end{pmatrix}$ durch den Raum. Dann folgt:

$$\vec{r}(t) = \int \vec{v}(t)dt = \int \begin{pmatrix} \sin(t) \\ \cos(t) \\ 5 \end{pmatrix} dt = \begin{pmatrix} -\cos(t) \\ \sin(t) \\ 5t \end{pmatrix} + \vec{c}$$

Dies stellt eine Schraubenlinie (parallel zur z-Achse) dar.

$$\int_0^{2\pi} \vec{v}(t)dt = \begin{bmatrix} -\cos(t) \\ \sin(t) \\ 5t \end{bmatrix}_0^{2\pi} = \begin{pmatrix} -1 \\ 0 \\ 10\pi \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 10\pi \end{pmatrix}$$

Hieran erkennt man, dass die Ganghöhe obiger Schraubenlinie 10π beträgt.

Die Bogenlänge einer Windung hingegen berechnet sich zu $\int_0^{2\pi} |\vec{r}(t)| dt = \int_0^{2\pi} |\vec{v}(t)| dt = \int_0^{2\pi} \sqrt{\sin^2(t) + \cos^2(t) + 25} \ dt = \sqrt{26} \cdot 2\pi$

d)
$$\vec{v}(x, y, z) = \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix}$$
 e) $\vec{v}(x, y, z) = \begin{pmatrix} 4+y \\ 4-x \\ 0 \end{pmatrix}$ f) $\vec{v}(x, y, z) = \begin{pmatrix} 5-(x-2)^2 \\ 5-(x-2)^2 \end{pmatrix}$

$$rot \ \vec{v} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} \qquad rot \ \vec{v} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} \qquad rot \ \vec{v} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$$

Die Beispiele d) und e) verdeutlichen, dass $rot\ \vec{v}$ nur die <u>Richtung</u> der Rotationsachse angibt.

Das Beispiel f) stellt ein mögliches Geschwindigkeitsfeld für einen 4m breiten Fluss dar. In der Flussmitte ist die Geschwindigkeit am größten.

Obwohl die Feldlinien nicht gekrümmt sind, gibt es eine Rotation: Eine winzig kleine Mühle würde sich (fast) überall drehen.

Aufgaben:

Alle angegebenen Funktionen seien sog. physikalische Funktionen.

1. Es sei
$$\vec{v}(x, y, z) = \begin{pmatrix} xz^3 \\ -2x^2yz \\ 2yz^4 \end{pmatrix}$$
. Bestimme $rot \ \vec{v}$ im Punkt P(1; -1; 1)!

2. Es sei
$$\vec{v}(x, y, z) = \begin{pmatrix} 2xz^2 \\ -yz \\ 3xz^3 \end{pmatrix}$$
, P(1; 1; 1) Bestimme jeweils im Punkt P: